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SYNOPSIS 

The behavior of two polymers, namely, low-density and linear low-density polyethylenes, 
was studied in transient and steady-state shear and elongational flows. The predictions of 
Wagner’s model with a damping function using a generalized invariant were calculated. 
The model appears to be suitable for predictions of the shear and elongational transient 
flows on the range of strains experimentally tested. The shear flow curves can also be 
recovered by the model on a very broad range of shear rates. The model is then used to 
assess extensional data obtained with the convergent flow analysis proposed by Cogswell. 
0 1996 John Wiley & Sons, Inc. 

I NTRODU CTl ON 

The determination of the elongational flow behavior 
of molten polymers is still an open problem. It re- 
mains difficult to reach very large strains and strain 
rates with the existing elongational rheometers. 
That is why indirect methods of determination of 
the elongational viscosity have been proposed, such 
as convergent flow analysis. For the last two decades, 
data obtained by different direct methods and/or 
data obtained with indirect methods have been fre- 
quently compared, but contradictions still exist and 
the problem of determining the elongational viscos- 
ity is therefore not totally solved. 

On the other hand, the development of softwares 
for flow simulation in processing tools brings rheol- 
ogists along to look for a constitutive equation able 
to predict the rheological behavior of molten poly- 
mers especially in mixed-flow situations. Even if that 
has not come to an end yet, the literature shows 
numerous examples of models and of comparisons 
between predictions and experimental data, as far 
as it is possible to get some. For instance, the integral 
Wagner model’ has been widely used in transient 
and steady-state shear flows and in transient elon- 
gational flows. It was usually shown to be relatively 
suitable to predict experimental data. In this study, 
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we proposed to use this model to validate the indirect 
method of determination of elongational flow curves 
proposed by Cogswell,’ often tested and discussed. 

BACKGROUND AND THEORY 

Indirect Method of Determination of the 
Elongational Viscosity 

The indirect method of determination of the elon- 
gational viscosity which is the most widely used, be- 
cause it can deal with the largest variety of fluids, 
is isothermal melt spinning. In a previous article? 
it was shown that this transient elongational flow 
is similar to the flow encountered in elongational 
viscosimeters. The viscosity obtained by such a 
method, which is a function of both the strain rate 
and the time, cannot be considered as a steady vis- 
cosity and elongational flow curves cannot be de- 
termined. In fact, the range of strain rates and 
strains reached, drastically limited by the influence 
of extrudate swell, draw resonance, or filament 
breaking, is too narrow. 

Cogswell’ developed an analytical analysis to de- 
termine the “elongational viscosity” from capillary 
rheometer data. He considered that the pressure 
drop at the entry of the die is due to shear and elon- 
gational contributions. 
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If 0 is the half-angle of convergence, a simple 
trigonometric argument yields that the pressure drop 
due to simple shear flow is 

APs = Aq/tan 0 (1) 

where q is the viscosity under simple shear a t  the 
shear rate at the wall of the converging part and A 
is a proportionality factor. By a similar argument, 
the pressure drop due to extensional flow is 

where qE is the elongational viscosity, and B, a pro- 
portionality factor. 

The two contributions are supposed to be sepa- 
rable and simply additive; therefore, 

In practice, the flow pattern is such that it varies 
along the distance from the die entry plane. For un- 
restricted convergence from a reservoir to a die, it 
is assumed that the flow will adopt a streamline that 
involves the least pressure drop: 

dAPE 
0 -= 

d tan e (4) 

Assuming that the viscosity under simple shear can 
be described by a power-law relationship over a lim- 
ited stress range and that the elongational viscosity 
is independent of stress, he solved these equations 
for an infinite set of very short tapes and obtained 
analytical expressions for the elongational viscosity 
and stress: 

where ya is the apparent shear rate; AP,, the en- 
trance pressure drop; and n, the flow index. 

This method provides data at significantly higher 
strain rates (100 s-l) than do the previous ones. 
However, because of the numerous assumptions of 
the theory and of some surprising results in the lit- 
erature, the method has been widely discussed and 
some contradictions still remain. For instance, in 
1969, Cogswel14 compared results obtained from a 
steady-state experiment with a melt tensile rheo- 
meter and from convergent flow analysis (CFA) . For 
both a poly(methy1 methacrylate) and a linear low- 

density polyethylene (LDPE), he found a really good 
agreement. In 1977, Shroff et al.5 found a good co- 
incidence between a set of data from isothermal 
melt-spinning and a set of data calculated by CFA 
for a polystyrene, a polypropylene, and a high-den- 
sity polyethylene. Nevertheless, they finally stipu- 
lated that the agreement could be fortuitous. In 1989, 
Laun and Schuch‘ compared the elongational vis- 
cosities from isothermal homogeneous drawing in 
different elongational viscosimeters and those cal- 
culated from the Cogswell analysis. Even if in some 
cases they found a good agreement, they concluded 
that no general rule could be given. For several poly- 
mers, Covas and Carneiro7 found considerable dif- 
ferences between the calculated viscosities and those 
determined with a Rutherford extensional rheo- 
meter, but they concluded that the qualitative rheo- 
logical behavior in elongation can be correctly as- 
sessed by CFA. 

Although the assumptions made by Cogswell in 
his theory might be questionable, inconsistencies 
between the authors can also find their origin in 
unreliable experimental values of elongational vis- 
cosity. For example, the experimental values ob- 
tained from isothermal fiber-spinning are question- 
able, the elongational rates are not constant along 
the threadline, and the steady state is seldom 
achieved. On the other hand, with an elongational 
viscosimeter, the values are much more reliable but, 
unfortunately, the level of strain rates reached is 
much smaller than the one obtained with convergent 
flows and the results are not easily comparable. 
As a consequence, our aim was to identify the nu- 
merical parameters of a suitable constitutive equa- 
tion using a well-controlled flow situation and then 
to compare the prediction of this equation in a steady 
elongational flow with experimental results obtained 
from CFA. 

The Model 

One of the models which has been widely used and 
which was shown to be relatively suitable to predict 
experimental data is Wagner’s model.’ Derived from 
Lodge’s rubberlike liquid theory: Wagner’s model 
is based on a concept of separability. It assumes that 
the memory function is the product of a time-de- 
pendent function and of a strain-dependent func- 
tion. The constitutive equation therefore takes the 
following form in the case of an increasing defor- 
mation: 
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where m(t - t ') is the memory function; h(Il, I z ) ,  
the damping function; and C;', the Finger relative 
strain tensor. 

In the case of a discrete Maxwellian relaxation 
spectrum, the memory function is related to the lin- 
ear relaxation modulus by 

= 

dG(t) @) m(t) = 2 - exp - - - - ~ 

i= 1 :i ( ;i) - dt 

where Xi are the relaxation times of the discrete re- 
laxation spectrum; v i  = gi - Xi, the viscosity contri- 
butions corresponding to the different Xi and gi , the 
modulus contributions. 

Different forms have been proposed for the 
damping function, but only a few of them are suitable 
in shear and in elongation. The form which has been 
chosen in this work is the sigmoidal form, first pro- 
posed in shear by Soskey and Winterg: 

1 
1 + a(1- 3)b'2 w 1 9  1 2 )  = 

Transient shear viscosity in stress growth: 

v+(t, +) = l m(s)h(+s)s ds + G(t)h(+t)t (15) 

Transient first normal shear stresses coefficient in 
stress growth: 

\k:(t, +) = 1 m(s)h(+s)s2 ds + G(t)h(+t)P (16) 

Transient elongational viscosity in stress growth: 

1 + T h(it)[e2" - e-"']G(t) (17) 
c 

Steady shear viscosity: 

where I is Wagner's general invariant," defined as 
First normal stresses coefficient: 

I = PIl + (1 - @)I2 

Il = 1 2  = y2 + 3 in shear (11) 

(10) 

with 

I I  = e2' + 2e-' I2 = (e-2c + 2e') in elongation (12) 

The damping function has to be calculated in the 
appropriate flow situation, which means that we 
need to determine one function in shear and one in 
elongation. They can be determined experimentally 
by a derivation from the tangential and elongational 
stresses, respectively, in transient experiments as 
proposed by Wagner" in elongation and by Fulchi- 
ron et a1.l' in shear: 

- - \ , ,  
Y 

m(d) 
u(c') - * dc' 

G2(&') 
c = it (14) 

e-e e2c - h(c) = 

Once the memory function and the damping 
functions are known, the different rheological func- 
tions can be calculated as followed: 

Steady elongational viscosity: 

Wagner's model has been extensively tested in shear 
and transient elongational flows. It has been shown 
to give rather good predictions of nonlinear behav- 
ior.'*",'2 It is one of the most widely used models in 
elongation because it predicts the existence of a 
steady-state regime for large strains. 

EXPERIMENTAL 

Materials 

Two commercial polyethylenes were selected for this 
study: a low-density polyethylene (LDPE) and a 
linear low-density polyethylene (LLDPE), different 
mainly in the degree and the nature of their branch- 
ing. Their molecular and physical characteristics are 
summarized in Table I. 
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Table I Molecular and Physical Characteristics of the Polymers 

LLDPE 19,100 120,000 6.3 0.73 0.922 
LDPE 26,700 120,000 4.5 0.8 0.921 

0.76 
0.75 

Techniques 

Shearing tests have been accomplished in three ge- 
ometries: (i) parallel plates, (ii) capillary rheometer, 
and (iii) cone and plate: 

Dynamic measurement of storage and loss 
moduli G' and G" were carried out using a 
Rheometrics dynamic analyzer, Model 700 
(RDA), in the dynamic mode with the parallel 
25 mm-diameter plate geometry. Tests were 
performed between 140 and 200°C for frequen- 
cies ranging between 0.01 and 500 rad/s. Above 
190°C, tests were carried out under a dry ni- 
trogen atmosphere, using 40 mm-diameter 
plates, to avoid thermooxidative degradation. 
A Rheometrics mechanical spectrometer, Model 
800 (RMS), was used with a 25 mm-diameter 
plate and a 0.1 rad angle cone geometry to per- 
form both stress growth and steady-state ex- 
periments a t  160OC. 
An Instron capillary rheometer (Model 3211 
equipped with a 0-2000 kg load cell) was used 
at 140, 160, and 190°C. Three series of dies, 
each characterized by a constant diameter (0.75, 
1.25, 2 mm), with a length-to-diameter ratio 
ranging from 1 to 12.5 were used. Experiments 
a t  constant plunger speeds ranging from 0.06 
to 20 cm/min, imposing a constant apparent 
wall shear rate, were performed whenever it was 
possible. In some cases, measurements were 
limited by the onset of melt fracture. 

Elongational data were obtained from two differ- 
ent tests: (i) constant strain elongational rheometer 
and (ii) Cogswell convergent flow analysis: 

Transient tests were conducted on the elon- 
gational viscosimeter developed by Muller and 
Froelich13 in which the sample is vertically and 
symmetrically stretched by two clamps, driven 
at an exponential velocity. The force-measuring 
device, clamps, and sample were immersed in 
a silicon-oil bath regulated at  160°C, with an 
oil density very close to that of the molten 
polyethylene. The samples were injection- 

molded and then annealed to avoid any residual 
stress in the material. 
The "steady-state" elongational viscosity data 
were obtained from the capillary rheometer 
data described above and eq. (5). 

RESULTS AND DISCUSSION 

Dynamic Tests 

First, the time-temperature superposition was ap- 
plied to the storage and loss moduli vs. the frequency 
curves, G'(w) and G"(w), to extend the frequency 
window at the reference temperature (16OOC). The 
discrete relaxation times spectra a t  16OoC were then 
calculated using a nonlinear minimization procedure 
described by Carrot et al.14 which lets the number 
of relaxation modes and the time values of these 
modes freely adjust. The two spectra obtained are 
shown in Table 11, and using these values in a Max- 
well model, the G' and G" curves can be recovered 
within a 3% error in the explored frequency window. 
But the procedure fails to recover the longest and 
the shortest relaxation times of the spectrum. If the 
zero shear viscosity as calculated agrees with the 
value determined by a Cole-Cole representation, the 
calculated equilibrium modulus G& (Table 111) is 
quite different from the data given in the literature, 
due to an obvious lack of experimental data a t  high 
frequencies. 

Transient Flows 

Knowing the discrete relaxation spectrum and stress 
growth data, the experimental damping functions 
were obtained using eqs. (13) and (14). In Figures 1 
and 2, the experimental damping functions obtained 
for shear rates ranging from 0.2 and 2 s-l are pre- 
sented. In this range of shear rates, the separability 
assumption is verified, as long as the data obtained 
at  different strain rates can be superposed. 

The damping function in elongation is presented 
for elongational rates ranging from 0.2 to 2 s-'. In 
the short time range, because of the starting delay 
time of the rheometer and because uncertainties in 
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Table I1 Relaxation Spectrum of LLDPE and LDPE at 160°C 

LLDPE LDPE 

Xi (s) Iti (Pa - S) Xi ( s )  It i  (Pa - s) 

1.28 . 10-4 2.367 - 10' 6.45 - 10-~ 
6.12 - 10-3 1.346 * lo3 5.35 . 10-3 
4.10 * lo-' 3.363 lo3 2.85 * lo-' 
2.77 * lo-' 4.691 - lo3 1.55 - lo-' 
2.01 * 100 3.726 - lo3 8.91 * lo-' 
1.57 * 10' 2.007 - lo3 4.58 - 10' 
1.35 - 10' 9.563 - 10' 2.34 - 10' 

1.18 - 10' 

9.810 * lo1 
2.855 - 10' 
7.679 * 10' 
2.619 - lo3 
6.464 - lo3 
1.219 - lo4 
1.325 - lo4 
7.296 - lo3 

the experimental data are important, eq. (14), in- 
volving both a difference and a numerical integra- 
tion, leads to physically unrealistic values of the 
damping functions. On the other hand, the maxi- 
mum Hencky strain is attainable with the elonga- 
tional rheometer hardly reaching 3. Consequently, 
the damping function can be known only on a nar- 
row range of strains. From these experimental data, 
the adjustable parameters (a ,  b, and p) of eq. (9) 
were calculated (Table IV). 

a and b were obtained from shear tests. Then, 
with the memory function and an analytical expres- 
sion of the damping function in shear being known, 
the predictions of the model in transient flow can 
be calculated with eqs. (15) and (16). The calcula- 
tions of the damping function, stress, and first nor- 
mal stresses coefficient growth are compared to the 
experimental data in Figures 1-6. 

Keeping a and b constant, p was evaluated from 
the elongational data. It should be noted that, es- 
pecially for the LLDPE, for which strain hardening 
is not very pronounced, the determination of this 
last parameter is not easy. That is why the parameter 
was chosen from the best fit of both experimental 
damping function and stress growth experiments. 
In spite of uncertainties of the parameters, it can 
be seen in Figures 1 and 2 that the analytical forms 
chosen give a rather good fit of the experimental 
data. Moreover, the values of p are consistent with 
those mentioned by Papanastasiou et al.I5 The pre- 

dictions of the model in elongation are calculated 
with eq. (17) and compared to the experimental data 
in Figures 7 and 8. 

In the range of experimental shear rates, both the 
transient behavior and the values of the tangential 
and normal stresses a t  the plateau are well recovered. 
In elongation, the stress growth is recovered for 
elongational strain rates up to 2.6 s-'. It can there- 
fore be concluded that Wagner's model is well pre- 
dictive of the different transient flows. 

Steady-state Shear Flows 

With the cone and plate geometry, steady-state ex- 
periments were carried out. Viscosity (7) and first 
normal stresses differences (Nl )  were measured vs. 
shear rate. To reach high shear rates, capillary 
rheometry experiments were performed. All stress 
data were corrected using die entrance pressure 
drops determined from Bagley's diagrams. The plot 
of corrected stress obtained with the whole series of 
dies yields a unique curve, confirming the validity 
of the correction, whatever the temperature is. The 
Rabinowisch correction was applied. The power law 
index n was calculated from the local slope of a sec- 
ond-order polynome, fitting stress vs. shear rate on 
a double logarithmic scale. The shift factors are 
found to be identical to those from dynamical tests. 

In Figures 9 and 10, different data are plotted. 
The equivalence between dynamic and steady- 

Table I11 Viscoelastic Parameters at 160°C Determined (1) from Cole-Cole Representation and 
(2) from the Relaxation Spectra 

T It0 (1) 710 (2) GR (2) 
Material ("C)  (Pa - s) (Pa-s )  (pa) 

LDPE 160 4.26 . 104 4.30 - 104 2.6 - 105 
LLDPE 160 1.54 - lo4 1.44 . 104 2.3 - lo6 
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Strain 

Figure 1 Damping functions of LLDPE at 160°C (0) 
in shear and (0) in elongation. (-) Fit according to  eq. 
(9)  with invariant ( 10). 

state shear data can be observed only for LLDPE 
[?(+) = 1~*(0)1 c w = + , ] .  For LDPE (Fig. lo), the 
quantities measured by capillary and cone and 
plate rheometers appear to be higher than the dy- 
namic ones especially in the medium shear rate 

Wagner’s model allows predictions of the steady- 
state rheological shear functions from eqs. (18) and 
(19). In Figures 9 and 10, calculated and experi- 
mental data of the viscosity and first normal stresses 
coefficient are shown to be in a very good agreement. 
For the LDPE for which the Cox-Merz rule does 
not apply, the calculated viscosities coincide with 
the steady-state viscosities obtained in steady-state 
shearing. If as shown by different  author^'^,'^ that 
the damping function might also depend on the 
strain history of the material, it is normal to have 
better agreement with the steady-state shearing 
data, since the same geometry was used and the 
strain was uniformly increasing during the tests. 
Wagner’s model, using the damping function defined 
by Soskey and Winter: predicts well the steady- 
state shear behavior. 

range td+) > I v*(o) I C ~ = + ) I .  

Steady-state Elongational Flows 

In the steady-state elongational mode, the predic- 
tions of Wagner’s model are given by eq. (20). The 
“experimental elongational parameters” can be cal- 
culated from eqs. (5) and (6) using the capillary 
rheometer data presented above. Although Cogs- 
well’s theory has been established for 180” die entry 
angles, the data obtained in the capillary rheometer 
with 90” die entry angles were used. In fact, our 
measurements and Seriai’s ones1’ showed that the 

die entry angle between 90” and 180” has no influ- 
ence on the entrance pressure drops. 

In his original study, Cogswell considered a 
power-law equation for the viscosity, which means 
that the power law index n is assumed to be constant 
whatever the shear rate is. As regards the shear flow 
curves, n obviously changes with +. The power law 
index has therefore been taken as a variable in the 
calculations (n = A + B log +) of 1. and qE. The 
elongational flow curves of the LLDPE and of the 
LDPE are presented in Figures 11 and 12. 

In spite of careful experiments of the shear flow 
parameters (temperature control along the reservoir, 
residence time in the reservoir at the beginning of 
the experiment), data are rather scattered. The pa- 
rameter which seems to be at the origin of the dis- 
crepancy is the entrance pressure drop. A statistical 
approach done on the Bagley’s regression shows that 
the error on the entrance pressure drops can reach 
30% for the lowest shear rate tested, but otherwise 
ranges between 5 and 10%. This error is at least 
recovered on the elongational strain rate and is 
multiplied by two on the elongational rate. 

Because Bagley’s diagrams have often been dis- 
cussed by authors such as Hanl’ or Laun and 
Schuch: we tried to confirm the validity of our data. 
As observed by Utracki and Schlund2’ on different 
polyethylenes, the plot on a double logarithmic scale 
of die entry pressure drops vs. apparent shear rate 
or vs. shear stress, for a contraction ratio ranging 
from 4.76 to 12.7 and whatever the die diameter is, 
gives an unique curve for each polymer (Fig. 13). In 
addition, the time-temperature superposition can 
successfully be applied using the shift factors ob- 
tained in linear viscoelasticity. 

nn 
0 2 4 6 a 10 12 

V.V  

Strain 

Figure 2 Damping functions of LDPE at 160°C (0) in 
shear and (0 )  in elongation. (-) Fit according to eq. (9) 
with invariant (10). 
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Table IV Values of the Adjustable Parameters of the Damping Functions 

Functions LDPE LLDPE 

1 a = 0.084 a = 0.086 
= 

b = 2.56 b = 2.06 
1 a = 0.084 a = 0.086 

h(c) = 
1 + a[P(e2' + 2e-') + (1 - P)(e-" + 2e') - 3]*" 

p = 0.019 
b = 2.06 

p = 0.02 
b = 2.56 

The evolution of the entrance pressure drop can 
be well represented by a second-order polynome. 
Using these fitted entrance pressure drops, the 
elongational parameters were recalculated. Scatter- 
ing is thus canceled, and for the two samples, these 
curves nicely smooth the scattered points (Figs. 11 
and 12). 

On the LLDPE flow curve (Fig. ll), two values 
of steady-state elongational viscosity data obtained 
with an elongational viscosimeter are presented. 
They are in good agreement with the previous data. 
Both the elongational rates at which the strain 
hardening appears and the ratio of the maximum 
viscosity to the Troutonian viscosity lie in the same 
order of magnitude as does the data found by Covas 
and Carneiro7 and Laun and Schuch' by the same 
method on polyethylene with very similar molecular 
structures. Finally, as previously shown by Laun and 
Schuch,' it is seen that in elongation the thermo- 
dependence is of the same sort as in the shear: An 
Arrhenius-type rule gives a good evaluation of the 
viscosity a t  different temperatures in the explored 
range. 

100 101 102 lo3 
10-1 

Time [sl 

Figure 3 Transient shear viscosity of LLDPE at 160°C. 
( A )  Experimental: 0.2 s-'; (0) 0.5 s-'; (0) 1 s-'. (-1 
Calculated. 

The comparison of the model predictions and of 
the data obtained from the CFA analysis is finally 
made in Figures 9 and 10. The occurrence of strain 
hardening, as well as the strain rate position (along 
the X-axis) of the maximum of viscosity calculated 
by the CFA are close to the data predicted by the 
model. The main disagreement lies in the value of 
the maximum viscosity on the LLDPE and in the 
viscosities a t  high strain rates for the LDPE. 

The inaccuracies of the linear relaxation modulus 
and of the damping functions, due to a lack of data 
in dynamic tests or in transient stress growth, ob- 
viously do not lead to a significant divergence of the 
predictions in transient and steady-state shear flows 
and are therefore probably not a t  the origin of the 
differences in the steady-state elongational flow. 
They probably find their origin first in the level of 
viscosity which is quite low in the case of the LLDPE 
and which can lead to some degree of inaccuracy of 
the experimental data and, second, in the problem 
of residence time in the convergent. With time being 
an important parameter for elongational flows, the 
residence time in the convergent was compared to 

I 
lo;o!, ' ' ' ' " " I  100 101 102 

Time [sl 

Figure 4 Transient shear viscosity of LDPE a t  160°C. 
Experimental: ( A )  0.2 s-'; (0 )  0.5 s-'; (0) 1 s-'. (-) 
Calculated. 
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Time [sl 

Figure 5 Transient first normal stresses difference 
coefficient of LLDPE at 160°C. Experimental: (A) 0.2 
s-'; (0 )  0.5 s-'; (0) 1 s-'. (-) Calculated. 

the time required to obtain a stationary value of the 
viscosity, according to Wagner's model predictions. 
If a t  low shear rates the residence time is long 
enough, at high shear rates, this might be sometimes 
questionable. In the case of LLDPE, for instance, 
at elongational rates greater than 17 s-l, the resi- 
dence time was found to fall in the order of the max- 
imum relaxation time of the spectrum. 

CONCLUSION 

The behavior of two polymers was studied in differ- 
ent flow situations. In shear and in elongation, the 
LLDPE and the LDPE, with equivalent molecular 
weight and close molecular weight distribution (ac- 
cording to GPC measurements), display very dif- 
ferent flow behavior. 

Y 

10-1 100 10' 102 
Time [sl 

Figure 6 Transient first normal stresses difference 
coefficient of LDPE at 160°C. Experimental: (A) 0.2 s-'; 
(0) 0.5 s-'; (0) 1 s-'. (-) Calculated. 

106 

- 
f lo5 a 
h 

OW 

Y 
v 

+2 104 

a 

Figure 7 Transient elongational viscosity of LLDPE 
at 160°C. Experimental: (A) 0.2 s-l; (0 )  0.5 s-'; (0) 1 
s-'. (-) Calculated. 

The influence on the linear viscoelastic behavior 
has been observed. The relaxation time correspond- 
ing to the maximum viscosity in the spectrum is 100 
times higher in the case of the LDPE than of the 
LLDPE. Because of a long chain, the relaxation of 
the junctions is slower, shifting the spectrum to the 
long relaxation times. Newtonian and Troutonian 
viscosities appear a t  very low strain rates and are 
very high. 

Nonlinear viscoelastic flow behavior is also 
strongly influenced. The decrease of the damping 
function is smoother in the case of LDPE. Long side 
branches might hinder complete retraction of the 
polymer chains and lead to a persistance of the 
junctions. The shear thinning appears at low strain 
rates and is much more pronounced. In elongation, 
strain hardening is more important and the maxi- 
mum of viscosity is reached for lower strain rates 
than for LLDPE. Long-chain branching has a pre- 

a 

Figure 8 Transient elongational viscosity of LDPE at 
160°C. Experimental: (A) 0.2 s-'; (0 )  0.5 s-'; (0) 1 s-'; 
(0) 2 s-'. (-) Calculated. 
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2 
k 10' 

+ lo4 
a_ lo3 

- 
2- 

m 

F 

1 
%-3 10-2 10-1 100 101 102 103 

Strain Rate [s-ll 
Figure 9 Steady-state functions for LLDPE at 160'C. 
Experimental: ( A )  elongational viscosity from CFA; ( 0 )  
elongational rheometer. ( 0) First normal stresses differ- 
ence coefficient. Steady-state and dynamic shear viscosity 
determined with (A) cone and plate geometry, (0 )  cap- 
illary rheometer, and ( + ) oscillatory parallel plates. ( -) 
Calculated. 

dominant effect (compared to the MWD) on the 
flow behavior in shear and in uniaxial elongation. 

The predictions of Wagner's model with a damp- 
ing function using a generalized invariant were cal- 
culated and compared to the experimental data. On 
the tested range of shear rates, the model gives very 
good predictions of the transient flows in shear and 
in uniaxial elongation. In shear, where the experi- 
mental data are very accurate, the steady-state flow 
behavior is recovered by the model. If the essence 

10' 

N" 106 

k - lo5 

7 104 

lo3 

102 

v! 

- 
3- 

m 
k 
F 

F 
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Figure 10 Steady-state functions for LDPE a t  160°C 
(experimental and calculated). Experimental: ( A )  elon- 
gational viscosity from CFA. (0) First normal stresses 
difference coefficient. Steady-state and dynamic shear 
viscosity determined with (A) cone and plate geometry, 
(0) capillary rheometer, and (+)  oscillatory parallel 
plates. (-) Calculated. 
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Figure 11 Master curve of elongational viscosity vs. 
strain rate at 160°C for LLDPE according to ( A )  Cogswell 
analysis, (--) using fitted entrance pressure drops, and 
( 0 )  data from elongational viscosimeter. 

of the model is accepted, the different functions used 
can be considered to be satisfying. 

The convergent flow analysis proposed by Cogs- 
well was used to determine the steady-state elon- 
gational viscosity of the two polyethylenes. The 
problem of the determination of the entrance pres- 
sure drops was shown to be determinant in this sort 
of analysis. Nevertheless, the data obtained are in 
rather good agreement with the predictions of Wag- 
ner's model. The divergences observed were related 
to the problems of residence time. In conclusion, the 
consistency of the numerous elongational data ob- 
tained by different techniques and the confrontation 
with data calculated by a pertinent Wagner model 
show that Cogswell's CFA is a good approach of the 
elongational flows at high strain rates. 
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Figure 12 Master curve of elongational viscosity vs. 
strain rate a t  160°C for LDPE according to (A) Cogswell 
analysis, and (-) using fitted entrance pressure drops. 
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and (A) for LDPE. (-) Polynomial fitting. 
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